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Abstract. When average one-particle densities are spatially uniform at a microscopic level the
state is considered to be a homogeneous liquid. A prescription is required for the basic dynamical
elements involved in the averaging itself, and for hydrogen, at low densities and temperatures,
these are the familiar hydrogen molecules. But, at compressions now achievable both by static and
dynamic means, a more basic description in terms of protons and electrons incorporating residual
pairing correlations is necessary. The latter are dependent in large part on the nature of effective
state-dependent pair interactions between protons, and in a narrow band of densities near rs = 1.33,
these may be especially weak. The hydrogen liquids refers to the (quantum) diatomic liquid, the
high density monatomic liquid, and the variably correlated transition phases between the two.

1. Introduction; the hydrogen problem

Condensed fluid phases of hydrogen first appeared in the laboratory just over a century ago.
Condensation proceeded from a gas of strongly bound two-electron/two-proton (2e + 2p)
entities which suffer negligible physical change during the transition to the liquid. These
hydrogen molecules, and the need to understand the strength of the implied homopolar binding,
presented a key initiating problem for the new quantum mechanics of the time. Because of
its preponderance in the universe, hydrogen constitutes a fundamental system in nature which
provides examples of it over a wide range of thermodynamic conditions. Some 9 out of 10
atoms in the giant planet Jupiter, for example, are hydrogen, and conditions permit fluid phases
which are molecular, dissociated (and metallic), and intermediate.

The dense-hydrogen problem can also be constructed from two equally fundamental
problems, identical in form, namely

(i) N interacting electrons (α = e) in a uniform compensating background (occupying a
volume V ),

(ii) N interacting protons (α = p) in a similar background of opposite sign (but otherwise
equal density), and

(iii) the coupling between (i) and (ii).

If Ĥα are the corresponding (fermionic) Hamiltonians, neither having specific reference to
spin, then all phases of hydrogen are described by

Ĥ = Ĥe + Ĥp −
∫
V

dr

∫
V

dr′ vc(r − r′)(ρ̂(1)
p (r) − ρ̄)(ρ̂(1)

e (r′) − ρ̄) (1)

wherevc(r) = e2/r , ρ̄ = N/V and where for coordinates rαi the one-particle density operators
are defined by

ρ̂(1)
α (r) =

∑
i

δ(r − rαi). (2)
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The fundamental electron and proton problems in (1) have corresponding Hamiltonians

Ĥα = T̂α +
1

2

∫
V

dr

∫
V

dr′ vc(r − r′){ρ̂(2)
α (r, r′) − 2ρ̄ρ̂(1)

α (r) + ρ̄2} (3)

where the two-particle density operators are

ρ̂(2)
α (r, r′) = ρ̂(1)

α (r)ρ̂(1)
α (r′) − δ(r − r′)ρ̂(1)

α (r) (4)

and the T̂α are total-kinetic-energy operators. To describe deuterium it is only necessary
to replace the mass of the proton (mp) by that of the deuteron (md ) in the kinetic energy
(T̂p = ∑

i (−h̄2/2mp)∇2
pi) and to acknowledge a fundamental change in the quantum

statistics.

2. The hydrogen liquids

The Hamiltonian described by (1) has considerable symmetry, and although the particular
states of Ĥ also possessing continuous translational and rotational symmetry are of principal
concern in what follows, it should be noted that general scaling relations govern the energy
states, independent of phase [1]. The form of (1) also leads to quite general predictions of
density-dependent instabilities towards pairing in both electron and proton degrees of freedom
[2]. By convention the structure of hydrogen (and indeed of most systems) is defined by
the physical attributes of the appropriate average of the one-particle density operator for the
massive degrees of freedom, here the protons. Thus if the quantum statistical average of the
proton one-particle density operator

ρ(1)
p (r) = 〈ρ̂(1)

p (r)〉
should be triply periodic in space, then the hydrogen is considered to be in a three-dimensional
crystalline phase.

The hydrogen liquids are the phases of (1) satisfying

ρ(1)
p (r) = constant = ρ̄ = N/V.

This is a condition that does not rule out the possibility of further structuring on a microscopic
length scale, the obvious case being proton pairing. This will be revealed through the two-
particle density, the corresponding average of (4), namely

ρ(2)
p (r, r′) = 〈ρ̂(2)

p (r, r′)〉 = ρ(1)
p (r)ρ(1)

p (r′)gp(r, r′) (5)

which for states of continuous symmetry takes the form

ρ(2)
p (r, r′) = ρ̄2gp(|r − r′|). (6)

Here gp(r) is now the standard radial distribution function whose form is well known to reflect
pairing correlations in systems where diatomic order is persistent.

Though the Hamiltonian (1) is rather simple, its states, as revealed by the phase diagram,
are complex. Figure 1 shows both low-temperature and high-temperature fragments [3] over
density ranges which are now accessible by static and dynamic high-pressure methods. At
normal pressures and low temperatures, isolated hydrogen condenses from a diatomic gas to
first form a uniform liquid (ρ(1)

p (r) = ρ̄) where the diatomic molecules remain weakly coupled
by interactions including a long-range quadrupolar contribution. Further cooling leads to a
crystalline solid (phase I, for p < 110 GPa), where ρ(1)

p (r) is periodic but where the angular
momentum as assigned to the molecule remains a remarkably good quantum number, in spite
of the presence of a dense crystalline environment. It requires very significant compression to
eventually hinder this rotation, the result (phase II, for 110 GPa � p � 151 GPa) being a crystal
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where proton pairs execute wide-angle libration. With further compression at low temperatures
another phase boundary is encountered. The new phase (phase III, for p � 151 GPa) exhibits
remarkable infra-red activity [4], not uncharacteristic of an electronic state of (1) where
symmetry has been spontaneously broken and where there is a persistent and principally dipolar
distortion of electronic charge [5]. The boundary between phases II and III therefore reflects
in part the coupling of permanent quadrupoles to the emerging state-dependent dipoles [6].
An increase in temperature can drive the system back to a rotationally unpolarized state (phase
I), as it will with phase II. Further increase in temperature will eventually melt the crystalline
(but site-rotational) state. Liquid and crystalline states are separated by a melting line which
follows a Simon melting law [7] reasonably well for moderate compressions. An important
question (especially in view of the relatively high conductivity observed [8] at both elevated
temperatures and compressions) is the degree to which the fluid state is one where the integrity
of the (2e + 2p) unit is actually preserved when more extreme conditions are reached. This
question is crucial to the thermodynamic and correlation functions of the system, and also to an
understanding of the transport properties [8]; it is briefly addressed in section 5 whose purpose
is to qualitatively assess the role of correlation in the dissociation problem at high densities.

Figure 1. (a) The phase diagram for dense hydrogen at relatively low temperatures. Phase I cor-
responds to a rotational crystal, phase II to a rotationally hindered (librational) crystal, and phase
III to a hindered but highly infra-red-active crystal. At about 410 GPa (rs ∼ 1.33) a transition to
a monatomic phase is predicted [14]. (b) The phase diagram extended to higher temperatures; the
experimental point (L) corresponds to a phase where a conducting state is reported. The dashed
region near L indicates a possible boundary separating insulating from conducting behaviour.
Between this region and the low-temperature phase boundaries, a melting curve will be crossed;
as discussed in the text the state dependence of the pair interaction is considerable, and may well
lead to a maximum in the melting curve.

3. The paired hydrogen liquid

For N protons and N electrons in a volume V (alterable by experiment) a starting point for
a neutral system is a canonical partition function Q = Tr exp(−βĤ ) where the trace is to be
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taken over the states of (1). Ifme is the mass of the electron thenmp/me (=1836) is sufficiently
large that electronic and protonic degrees of freedom can be reasonably separated as a first
step and the partition function can then be written:

Q = Trp{Tre(p) exp(−βĤ )} = Trp exp(−βHeff (V , T ))

where the trace over electron states is for momentarily fixed proton configurations. If, further,
the electron system is reasonably close to its ground state, then Ĥeff (V , T ) = Ĥeff (V ) is an
effective Hamiltonian for a description of proton dynamics. It acquires a formal dependence
on density if the electron states are themselves sensitive to a volume-dependent boundary
condition. In the hydrogen problem a convenient linear measure of atomic volume is provided
by rs where (4π/e)r3

s a
3
0 = V/N . Standard conditions for hydrogen correspond to rs ∼ 3.13

and the system then conforms to an assembly of spin-antisymmetric (2e + 2p) units, i.e.,
electron pairs localized around pairs of protons (the many-electron wave-function is effectively
decoupled when, as for J = 0 para-hydrogen, the orientational motions of proton pairs are
uncorrelated). Under these conditions the configurationally dependent component of Ĥeff can
be developed in terms of pair, three-body, etc, potentials between the (2e + 2p) units that are
clearly the correct elementary objects for the application of quantum statistical physics in both
liquid and solid [9] phases.

The critical point of hydrogen corresponds to 33.19 K (of deuterium, to 38.34 K). The
proton thermal de Broglie wavelength is λp = a0(4π)1/2(me/mp)

1/2/(kBT (Ryd))1/2 and at
300, 30, and 3000 K, respectively, takes on the values 1.85 a0, 5.85 a0, and 0.585 a0. In
the liquid phase at normal pressures, the molecular counterpart λm (=λp/

√
2) has a value

comparable to intermolecular spacings. Quantum effects are therefore expected to endure
over a considerable range of temperatures; mass-related differences are seen [10, 11] in the
static structure factor (which is proportional to the Fourier transform of gp(r)− 1, where gp is
defined in equation (6)). The low-temperature fluid state of hydrogen can itself be subjected
to pressure, and for pressures reaching as high as 20 GPa the mean interproton distance shows
a noticeable decrease [12]. Liquid hydrogen can also be supercooled at ordinary pressures
[13] offering the possibility (not as yet realized) of obtaining Bose–Einstein condensation in
a diatomic fluid (Bose–Einstein condensation in monatomic spin-polarized hydrogen being
realized).

But the picture of immutable (2e + 2p) molecules changes radically when compressions
exceed a factor of 10 and temperatures drive the system towards classical conditions in the
translational degrees of freedom.

4. The atomic liquid

Apart from inhomogeneities required, absolutely, by the cusp theorem, the electronic
background expected from Hamiltonian (1) becomes increasingly uniform when the average
density attains sufficiently high values (or rs is sufficiently small). For an isolated hydrogen
atom, the electron density at the proton has an equivalent rs-value given by (4π/3)r3

s a
3
0 =

(1/πa3
0)

−1, or rs = 0.89. From this it might well be expected that the requirement on density
for transition to a microscopically regular state should be rs < 0.89. (Here a microscopically
regular state is one where all near-neighbour interparticle spacings are determined solely by
density; they must therefore be just 2αrsa0, where α is close to unity and is fixed by geometry.)
However, an instability of depairing character can actually be shown to set in at a lower
density [14]. Observe that for infinitely massive protons the lowest energy state of Ĥp by itself
is achieved for the BCC structure, and if a pairing state were to nucleate from such a structure,
then at fixed density a corner proton and centre proton will reduce their mutual separation by,
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say, δ. From the standpoint of the electrostatic terms in of Ĥp this is equivalent to appending
fixed dipoles to alternating sites in the original undistorted structure, these leading (for this
cubic system) to a rise in energy proportional to δ2. But with the electrons now included
(i.e. Ĥe), and their coupling to Ĥp, there is a corresponding lowering of band-structure energy
(most prominently from the {100} Bragg planes which are absent prior to distortion) and this
declines as δ2. Both contributions are functions of density, and the distorted (or paired) lattice
is calculated to be stable (the electron response energy exceeds the penalty) but only until the
density reaches an equivalent rs = rsc ≈ 1.33 [14].

This is a variant on the Jahn–Teller and Peierls arguments usually invoked to explain
the tendency of symmetric quantum systems to yield to symmetry-lowering distortions. A
mechanism for ordering (pairing) can therefore be identified, and it can be assigned an order
parameter λ which is proportional to the displacement of one proton in the pair from a
convenient lattice site. Then for a sequence of declining pressures (increasing rs) the Landau
theory predicts a Gibbs energy/proton of the form

g(ρ, T ; λ) =
∑
n=0

a2n(ρ, T )λ2n

with a transition to a paired state, from monatomic, occurring at ρ̄ = ρ̄c (or rs = rsc).
Subsequent to an electron trace these energies can also be resolved into pair and multi-

centre potentials governing the displacements of the protons. The role played by exchange
in determining the form of the pair potential φ(2)

p (k; rs) is especially pertinent; this is made
clear from a comparison of the electron density close to the protons with valence electron
densities characteristic of ordinary metals. For larger k, say k > 1/a0, the limiting form for
φ(2)
p (k; rs) will be 4πe2/k2, and is positive definite. When overall densities are not too high,

protons are strongly paired, and, as noted, exchange is well known to be important to this.
It follows that for these conditions φ(2)(k → 0; rs) should approach the volume average of,
say, the Kolos–Wolniewicz potential [15], which is significantly negative. The magnitude
of the notable exchange energy originates with both the cusp structure of the density and its
overall scale. The progression, with density, of the depth of the pair potential (and hence
the trend of φ(2)

p (k = 0, rs)) can readily be obtained from analysis of the vibrons in dense
hydrogen and deuterium [16]. The depth of the associated well then extrapolates to near-
vanishing values at rs ∼ 1.33, but its location remains close to 1.4 a0 (and not to 2αrsa0).
From the form of either the dominant exchange terms in the Heitler–London description,
or from the local density approximation, the expectation is φ(2)

p (k) ∼ −b/(a + k2)2 for the
behaviour of the departure of φ2

p(k) from its k = 0 value. At high densities this will diminish
in importance (it is the non-uniform component of density, rather than the uniform background
on which it is superimposed, which leads to spatial dependence). But for high-density states
of metallic hydrogen the effective proton–proton interaction will eventually take the screened
(and positive) form 4πe2/k2ε(k), where ε(k) is the static dielectric constant of the interacting
electron gas (incorporating response to just linear order).

At densities where band theory and total-energy calculations declare the onset of a
dissociative transition [14] to a metallic state (rs ∼ 1.33) the effective potential must continue
to reveal at least the remnants of the attractive tendencies of exchange. Thus, φ(2)

p (r; rs) as
determined only by linear response above is expected to exhibit a first minimum at around 2rsa0,
and weak Friedel oscillations thereafter. In fact, low-density conditions distinctly favour an
exchange-driven minimum in φ(2)

p at around 1.4 a0, a separation that declines only a little with
density; it follows therefore that a critical dissociation density should occur which corresponds
to a situation where the average minimum separation continues to be ∼2rsa0 yet there remains
a repulsive region (reflecting both the remnants of exchange and the direct interactions) but
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one which does not set in until significantly smaller separations.
At high compression it will be necessary to contend with the effects of intermolecular

exchange which with increasing density will further promote the transition to a microscopically
regular state. However, the overall argument just presented is not significantly altered and it
suggests that a small band of densities may exist for which hydrogen is not highly correlated.
For such densities the residual long-range interactions characterized, as noted, by Friedel
oscillations, are relatively weak; the context in which weak has physical meaning here is that
the residual structure in φ(2)

p is always to be gauged with respect to proton zero-point energy.
The two are actually comparable [17], exactly the physical situation that prevails in He, but
under normal conditions. For this reason the critical (but possibly quite narrow range of
densities) just inferred for hydrogen will be one where quantum effects are of quite crucial
importance leading either to the possibility of incommensurate structures, or more likely to
(a) a ground-state liquid, (b) a liquid state that may be metallic, exhibiting electron pairing (in
hydrogen), and (c) a metallic liquid state exhibiting pairing for electrons and superfluidity for
deuterons (in deuterium). At the very least, this argument suggests that the melting line for
dense hydrogen may possess a maximum in the density range 3.13 > rs > 1.33.

The route to a monatomic phase is therefore expected to be complex when viewed in
terms of the controlling interproton potentials. Monatomic crystalline structures are predicted
[17] to occur at rs � 1.33 (at T = 0), and the transitions to these evidently take place from
orthorhombic structures [14]. However, as noted, the existence of the pairing instability is
easily demonstrated with the simpler body-centred-cubic case. This example also provides
estimates of the separation energy (ε(V ) for protons in a dense environment, and at rs = 1.5
(near ninefold compression) the energy is approximately 1 eV [17], and this will be important
below. For the same density range (rs � 1.33) the fluid phases of hydrogen are also expected to
be largely monatomic. The interesting feature of these phases is that because of the significant
state dependence of the effective proton–proton interactions, the rise of pairing correlations
for higher densities might well exceed those anticipated merely on the basis of the rise in
density itself. The assumption that normal monatomic fluid phases should eventually exist
for liquid metallic hydrogen was central to early estimates [18] of its electronic transport
properties.

5. The intermediate or mixed hydrogen liquid

The effects of temperature are now to be added to this otherwise near-ground-state description
indicating a notable depairing induced by increasing density. Though multi-proton complexes
are anticipated to form, at least transiently, under such conditions, the case of proton pairs
dissociating in an already dense environment is of particular physical interest. Once the
system is in this conformation, there is the possibility of electronic hopping conduction by
a percolation type of mechanism provided the density of dissociated protons (Np/V , say) is
sufficiently high. The purpose of what follows is simply to establish some important measures
for the hydrogen liquid under intermediate conditions, and for this it is supposed that the cost
of separating a previously bound pair, and embedding the remnants at distant locations is a
known quantity, say ε = ε(V ). The effect of classical state dependence can be included
approximately by permitting ε to include an entropic component (ε = ε(V, T )).

Let Nm be the number of molecules on average under conditions which are taken as largely
classical for translational degrees of freedom. If N is the total number of protons in V , and
cp and cm the concentrations of protons and molecules respectively (and so Np + 2Np = N

or cp + 2cm = 1). Then within an approximate treatment of correlation, for example in a
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mean-field approach, the partition function for Np protons and Nm pairs will be

QN = [ev(1 − b{cm + cp}/λ3
pcp)(expβa{cm + cp}/v)]Np

×[ev(1 − b{cm + cp}/λ3
mcm)(expβa{cm + cp}/v) expβε(v)]Nm. (7)

Here v = V/N is the mean atomic volume, and (since v = (4π/3)(rsa0)
3) it follows that

v/λ3
p = (rsT

1/2 (K)/20.38)3. Equation (7) is familiar from the Van der Waals approximation
for which a and b have their standard meanings. By the earlier arguments, both are now
expected to be significantly state dependent (i.e. a = a(V ), b = b(V )). Note that to (7) can
also be appended the factors (T /2TR)

Nm to represent contributions to the partition function
from rotational degrees of freedom in the high-temperature limit, and (cosech(βh̄ω/2))Nm to
include contributions from a principal vibron. Finally, for a given V there may be common
volume-dependent (structure-independent) terms originating from the wide-band character of
the electron states.

At low pressures (rs ∼ 3) the energy ε(V ) is about 4.8 eV, and it is clear that intramolecular
interactions should dominate correlation effects in the determination of cp. To obtain a first
estimate of cp under these conditions, the free energy following from (7) is minimized with
a = b = 0, the uncorrelated case. Then cp is the physical solution of

c2
p + δcp − δ = 0

where (noting that λp/λm = √
2)

δ = (v/λ3
p25/2) exp(−βε(V )) ≡ (rsT

1/2 (K)/36.3)3 exp(−βε(V )). (8)

The required solution is cp = 2/{1 +
√

1 + 4/δ} and it follows that for low temperatures and
large ε(V )

Np ∼ δ1/2 ∼ N(rsT
1/2 (K)/36.3)3/2 exp(−βε(V )/2). (9)

There is then little dissociation, as expected.
At high temperatures this argument leads to cp ∼ 1, but for both high temperatures and

high density (where ε(V ) declines) the physics internal to pairs ceases to dominate, and the
role of a and b can no longer be neglected. Retaining both in (7), the free energy can again be
minimized with respect to cp and the result is that, in the minimizing condition, ε(V ) needs
only to be replaced by

ε(V ) + acp/v + kBT {ln(1 − bcp/2v) + (bcp/2v)/(1 − bcp/2v)} (10)

and the role of correlation (through a and b) can immediately be assessed from (10). Note at
once that (10) confirms in a self-consistent manner the previous conclusion that dissociation
is controlled by ε(V ) (cp can certainly be small when ε(V ) is large). However, it also shows
that if densities are such that ε(V ) is a few kBT , then the roles of a and b (and their state
dependence) are crucial to the dissociation problem. For recall that in the Van der Waals
approximation, b can be a substantial fraction of the atomic volume, v. In a similar way, a is
significant on a scale of kBT ; in an effective single-particle way it is representing the average
interaction between species. The especial importance of ε(V ) is now quite evident; it is a
quantity that can be estimated from the ground-state energetics of solid-phase structures, as
discussed above. Thus, for rs ∼ 3.13, ε(V ) is approximately 4.8 eV, the molecular value, but
this drops to about 1 eV when rs ∼ 1.6 [17]. For T ∼ 300 K, 4kBT ∼ 1 eV, implying that
there are significant changes in the uncorrelated estimates for cp (cp ∼ 0.45, for a = b = 0).

This conclusion can also be substantiated by focusing only on the role of excluded-volume
effects (b = 0, a �= 0). Here the problem can be addressed somewhat more accurately by
examining the change in proton chemical potential associated with short-range correlation of
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a hard-sphere character. If σ = σ(V ) is, in atomic units, a physical hard-sphere diameter
representing the short-range region of φ(2)

p (r;V ), then the packing fraction is η = (σ/2rs)3.
For uncorrelated protons the first factor of the partition function (7) gives

µp = kBT ln{v/λ3
p} (11)

but if the number dependence of the Carnahan–Starling free energy [19] is used instead to fix
the chemical potential, then

µp = kBT ln{e−γ v/λ3
p}

where

γ = γ (rs) = η(8 − 9η + 3η2)/(1 − η)3.

This confirms that even for modest values of packing fractions (n ∼ 0.1), corrections
to the uncorrelated estimates for dissociation will be considerable. Note that a form quite
similar to (9) can be written down for pairs (including the consequences of ε(V )), and the
equilibrium concentration cp (and the effective ε(V ) as in (10)) is then also determined by
the two separate factors of (7) from the required equilibrium condition µm = 2µp. Aside
from residual quantum aspects, these elementary classical estimates therefore reveal that for
the mixed hydrogen liquid a far more detailed knowledge is required of the state dependence
of the effective interactions if standard routes for the thermodynamic functions are pursued.
It should be noted, however, that the partition function for (1) can be established, ab initio,
as a coherent state path integral [2] which requires no resolution into effective potentials, an
alternative pathway which can also be examined in the high-temperature limit.

The recent dynamic compression experiments on dense hydrogen report densities rs ∼ 1.5
and temperatures of 3000 K (gas gun [8]) for hydrogen, and rs ∼ 1.73 and very much higher
temperatures (via laser shocks [20]) for deuterium. (It may be observed that at rs = 1.5 an
ideal gas already generates a pressure of 100 GPa at 23 000 K.) At rs = 1.5 (and T = 0), the
energy difference between paired and unpaired structures is ∼0.3 eV per pair; at rs = 1.73 it
is about 1.1 eV/pair. In both experiments significant dissociation is therefore predicted by (9)
and its extension to the correlated case via (10). For the gas-gun case [8] the fraction cp still
may well exceed the percolation threshold for conduction. These considerations show that
of the liquid states of hydrogen, those lying intermediate between the fully paired and fully
dissociated phases present the most significant theoretical challenge, especially if conditions
are such that in addition to persistence of strong correlation between protons, the electron
system is also becoming partially degenerate. In this respect the continuing impetus from both
gas-gun [8] and laser-shock [20] experiments can be seen as quite crucial to the physics of the
hydrogen liquids.
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